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Abstract. The maximum drawdown (MDD) is a well-known risk measure extensively used in financial markets.

It measures the maximum loss from peak to subsequent valley for a stochastic process. In this work we consider

discrete time processes, and derive the probability density of the maximum drawdown in terms of integral equation

recursions. This is one of the few works that tackle the MDD of discrete time processes, as most of the literature

focused on continuous processes.
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1 Introduction

The maximum drawdown (MDD) is one of the major risk measures for stock market investments.
It measures the maximum loss from peak to subsequent trough (Burghardt & Duncan, 2003) (see
Figure 1 for an illustration). The maximum drawdown is closely watched by investors, because
once a portfolio incurs a large drawdown, it could signify a shift in the profitability of the
portfolio. To distinguish between a pure chance event and a systemic change to the profitability
of the portfolio, one must test the maximum drawdown against a null hypothesis. This means
a probabilistic analysis of the maximum drawdown phenomenon is necessary. The maximum
drawdown as a mathematical problem applied to a stochastic process has been an active problem
since the 1940’s, where it was applied to water damn drawdowns. In fact it is considered by some
researchers to be one of two most important problems in the application aspects of the theory of
stochastic processes (together with the first passage time problem (Atiya & Metwally, 2005)).
Most of the work addressed continuous stochastic processes. In this paper we consider discrete
time stochastic processes, and derive the probability distribution for the maximum drawdown.
The derived formulas are in the form of integral equations. These formulas apply to any given
process transition density, and are not restricted to the normal case. We hope this contribution
will shed some theoretical insight into the MDD of discrete processes, and will spur some more
work on this vital problem.

2 Related Work

The maximum drawdown, since its formulation in the 1940’s, has had little progress until the
early 2000’s. Subsequently Douady et al., (2000) tackled the zero-drift Brownian motion case.
Magdon-Ismail et al. (2004), Magdon-Ismail et al. (2003), and Magdon-Ismail & Atiya (2004)
derived a formula for the expectation of the MDD for the Brownian motion with drift, in the
form of a series expansion. They also analyzed the behavior asymptotically (as time goes to
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infinity), showing that it undergoes a “double jump” phase transition, from linear to square root
to logarithmic, as the drift goes respectively from negative to zero to positive.

Subsequently, more work appeared on the MDD problem. Pospisil & Vecer (2008) computed
the expected value of the maximum drawdown by converting the problem to a partial differen-
tial equation (PDE) formulation. Zhang & Hadjiliadis (2010), and Hadjiliadis & Vecer (2006)
derived the probability that a rally of a units precedes a drawdown of equal units in a random
walk model and its continuous equivalent, a Brownian motion model in the case of a finite
time-horizon. Similarly Salminen & Vallois (2007) derived the joint distribution of maximum
increase and decrease for the Brownian motion. Landriault et al. (2015) developed formulas for
the frequency of drawdowns for the Brownian motion (by computing the Laplace transform).

Mijatovic & Pistorius (2012) and Landriault et al. (2017) derived formulas for the drawdown
for the case of Lévy processes. Zhang & Hadjiliadis (2012) developed formulas that provide for
the drawdown and, in addition the drawdown time (time in which the drawdown plays out).
Both measures are important for analyzing crashes, as crashes are characterized by a high speed
of market tumble. Hayes (2006) modeled the market as a Markov chain, and derived formulas
for the drawdown, and the probability of recovering from a drawdown, assuming a correlated
process.

In addition to pure mathematical analysis, some works studied the relation of maximum
drawdown to financial and other related instruments and applications. For example, Meilijson
(2003) studied a Brownian motion when certain optimal stopping is applied, with its implica-
tions on maximum drawdown. Carr et al. (2011) considered the maximum drawdown as a risk
insurance (against market declines). Landriault et al. (2017) analyzed drawdown for the case
of insurance risk. In it they considered the random nature of insurance claims’ arrivals. Vecer
(2007) proposed the use of options based on maximum drawdown to provide risk protection
instruments. Rotundo & Navarra (2007) and Petroni & Rotundo (2008) studied the relation
between maximum drawdown and stock market crashes. Goldberg & Mahmoud (2014) derived
the average of worst case maximum drawdowns exceeding a quantile of the maximum drawdown
distribution. In follow up work (Goldberg & Mahmoud, 2017) they propose this as a new risk
measure. Mahmoud (2015) proposed a risk measure that incorporates the speed of declines
associated with drawdowns.

One can observe that most of the work focused on continuous time stochastic processes. As
far as we know, the work proposed here is the first one to produce a complete solution for the
MDD probability density of the discrete stochastic process case.

3 Preliminaries

Let xt be a random process characterized by

xt = xt−1 + u, (1)

where u is a random increment with density pu. We assume that successive increments are
independent. Let the starting point be x0 = 0.

Define the running maximum as yt = maxτ∈{1,...,t}xτ . The maximum drawdown (MDD) is given
by

zt = maxτ∈{1,...,t}

[
yτ − xτ

]
. (2)

Figure 1 illustrates the concept of the maximum drawdown. The following three equations define
the formulation of the MDD problem:

xt = xt−1 + u, u ∼ pu (3)

yt = max
(
yt−1, xt

)
(4)
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zt = max
(
zt−1, yt−1 − xt

)
(5)

with x0 = 0, y0 = 0, z0 = 0. The reason for yt−1 instead of yt in Eq. 5 is that the maximum
is necessarily achieved at a time less than t if yt − xt has a positive value.

Figure 1. An illustration of the definition of the maximum drawdown

4 Derivation of MDD Probability Density

Using the Chapman-Kolmogorov equations, we obtain

p(xt, yt, zt)

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
p(xt, yt, zt|xt−1, yt−1, zt−1)p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
p(yt, zt|xt, yt−1, zt−1)p(xt|xt−1, yt−1, zt−1)

p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
δ
(
yt −max(yt−1, xt)

)
δ
(
zt −max(zt−1, yt−1 − xt)

)
pu(xt − xt−1)

p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1,

where δ(·) is the Dirac delta function and we used the Markov property in the first term of the
second equation and that allowed us to remove the conditioning on xt−1. We used also the fact
that

p(xt|xt−1, yt−1, zt−1) = p(xt|xt−1) = pu(xt − xt−1) (6)

and used Eqs (4) and (5) to evaluate p(yt, zt|xt, yt−1, zt−1).

To evaluate the integral we consider a number of possible ranges for the variables. In the first
case the process makes “new highs”. This means that the new maximum equals the final process

value: yt = xt. Because, for this case yt−1 ≤ yt = xt, we can write δ

(
yt − max(yt−1, xt)

)
=

δ(yt − xt). Also, δ

(
zt −max(zt−1, yt−1 − xt)

)
= δ(zt − zt−1) because yt−1 − xt ≤ 0. We get

p(xt, yt, zt) = δ(yt − xt)

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
δ(zt − zt−1)pu(xt − xt−1)

p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1

= δ(yt − xt)

∫ xt

0

∫ yt−1

yt−1−zt

pu(xt − xt−1)p(xt−1, yt−1, zt)dxt−1dyt−1.
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Note that the change in integration limits reflects the fact that for this particular case 0 ≤
yt−1 ≤ xt, and yt−1 − zt ≤ xt−1 ≤ yt−1. The latter inequality is due to the fact that zt = zt−1

(no new drawdown at t), zt−1 ≥ yt−1 − xt−1 (by definition), and xt−1 ≤ yt−1 (by definition).
The next case to consider is when yt > xt. For such case the argument inside the δ in

δ
(
yt −max(yt−1, xt)

)
equals zero only when yt = yt−1. So we substitute δ(yt − yt−1) in place of

δ
(
yt−max(yt−1, xt)

)
. We partition the integral w.r.t. zt−1 into two ranges: from 0 to yt−xt, and

from yt−xt to∞. In the first range δ
(
zt−max(zt−1, yt−1−xt)

)
= δ(zt−yt−1+xt) = δ(zt−yt+xt)

while in the second range δ
(
zt −max(zt−1, yt−1 − xt)

)
= δ(zt − zt−1). We get

p(xt, yt, zt) =

∫ yt−xt

0

∫ ∞

0

∫ ∞

−∞
δ

(
yt −max(yt−1, xt)

)
δ(zt − yt + xt)pu(xt − xt−1)

p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1

+

∫ ∞

yt−xt

∫ ∞

0

∫ ∞

−∞
δ

(
yt −max(yt−1, xt)

)
δ(zt − zt−1)pu(xt − xt−1)

p(xt−1, yt−1, zt−1)dxt−1dyt−1dzt−1

= δ(zt − yt + xt)

∫ yt−xt

0

∫ yt

yt−zt−1

pu(xt − xt−1)p(xt−1, yt, zt−1)dxt−1dzt−1

+

∫ yt

yt−zt

pu(xt − xt−1)p(xt−1, yt, zt)dxt−1.

The limits of the first integral w.r.t. xt−1 are as given above because xt−1 ≥ yt−1 − zt−1 =
yt − zt−1 (the latter is due the argument given above that yt = yt−1 in this case), and because
xt−1 ≤ yt−1 = yt. Combining all previous equations, we get the final equation:

p(xt, yt, zt) = 1(yt − xt ≥ 0)1(zt − yt + xt ≥ 0)

[
δ(zt − yt + xt) ·∫ yt−xt

0

∫ yt

yt−zt−1

pu(xt − xt−1)p(xt−1, yt, zt−1)dxt−1dzt−1

+

∫ yt

yt−zt

pu(xt − xt−1)p(xt−1, yt, zt)dxt−1

δ(yt − xt)

∫ xt

0

∫ yt−1

yt−1−zt

pu(xt − xt−1)p(xt−1, yt−1, zt)dxt−1dyt−1

]
,

where 1 is the indicator function (it equals 1 if the argument is true, and zero otherwise). The
existence of these functions is to enforce the fact that outside the ranges zt − yt + xt ≥ 0 or
yt ≥ xt the density is zero because otherwise the definitions of the variables would be violated.
We apply these equations to recursively obtain the joint density. First, we obtain the initial
density for t = 1. For such case, there are two possibilities: x1 ≥ 0 and x1 < 0, each of which
gives a specific expression for the density, leading to:

p(x1, y1, z1) = pu(x1)δ(y1 − x1)δ(z1)1(x1 ≥ 0) + pu(x1)δ(z1 + x1)δ(y1)1(x1 < 0). (7)

Moving to t = 2 and applying the density update equations, we get

p(x2, y2, z2) = δ(y2 − x2)δ(z2)1(x2 ≥ 0)

∫ x2

0
pu(x2 − y1)pu(y1)dy1

+δ(y2 − x2)1(x2 ≥ 0)pu(x2 + z2)pu(−z2)

+δ(x2 + z2)δ(y2)1(x2 < 0)

∫ −x2

0
pu(x2 + z1)pu(−z1)dz1

+δ(z2 − y2 + x2)1(y2 ≥ x2)pu(x2 − y2)pu(y2)

+δ(y2)1(x2 < 0)1(z2 ≥ −x2)pu(x2 + z2)pu(−z2).
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By observing the previous equation, and generalizing to the case of general t, we find that there
are six possible terms in the expression for p(xt, yt, zt):

• First term = δ(yt − xt)δ(zt)1(xt ≥ 0)at(xt), for some function at(xt). This corresponds to
the situation where the process has gone up in every single time step till time t, leading
to yt = xt and zero drawdown. Figure 2 depicts this situation.

• Second term = δ(yt − xt)1(xt ≥ 0)bt(xt, zt) for some function bt(xt, zt). This corresponds
to the situation where the process is making new highs (i.e. yt = xt), but has incurred
some drawdown at a previous time step. Figure 3 shows an example of this case.

• Third term = δ(xt + zt)δ(yt)1(xt < 0)ct(xt), for some function ct(xt). This corresponds
to the situation where the process has never gone above the zero level (leading to yt = 0).
In addition, xt is the lowest point and is therefore defining a new level for the maximum
drawdown. See Figure 4 for an illustration.

• Fourth term = δ(zt − yt + xt)1(yt ≥ xt)dt(xt, yt), for some function dt(xt, yt). This cor-
responds to the situation where the process xt is defining a new level for the maximum
drawdown. See Figure 5 for an illustration.

• Fifth term = δ(yt)1(xt < 0)1(zt ≥ −xt)et(xt, zt) for some function et(xt, zt). This corre-
sponds to the situation where the process has never gone above the zero level (leading to
yt = 0). However, unlike the third term, xt is not the lowest point and is therefore not
defining a new level for the maximum drawdown. See Figure 6 for an illustration.

• Sixth term = 1(zt ≥ yt − xt)1(yt ≥ xt)ft(xt, yt, zt), for some function ft(xt, yt, zt). This
corresponds to the most general case. In this situation, neither yt = 0, nor is xt defining a
new level for the drawdown. Figure 7 shows an example of this situation. This particular
term is the only one that does not appear in the case study of t = 2 above. However, it
will appear in subsequent time steps.

Thus, assuming that

p(xt−1, yt−1, zt−1) = δ(yt−1 − xt−1)δ(zt−1)1(xt−1 ≥ 0)at−1(xt−1)

+δ(yt−1 − xt−1)1(xt−1 ≥ 0)bt−1(xt−1, zt−1)

+δ(xt−1 + zt−1)δ(yt−1)1(xt−1 < 0)ct−1(xt−1)

+δ(zt−1 − yt−1 + xt−1)1(yt−1 ≥ xt−1)dt−1(xt−1, yt−1)

+δ(yt−1)1(xt−1 < 0)1(zt−1 ≥ −xt−1)et−1(xt−1, zt−1)

+1(zt−1 ≥ yt−1 − xt−1)1(yt−1 ≥ xt−1)ft−1(xt−1, yt−1, zt−1)

and applying the integral equation, we obtain:

p(xt, yt, zt) = δ(yt − xt)δ(zt)1(xt ≥ 0)at(xt) + δ(yt − xt)1(xt ≥ 0)bt(xt, zt)

+δ(xt + zt)δ(yt)1(xt < 0)ct(xt) + δ(zt − yt + xt)1(yt ≥ xt)dt(xt, yt)

+δ(yt)1(xt < 0)1(zt ≥ −xt)et(xt, zt)

+1(zt ≥ yt − xt)1(yt ≥ xt)ft(xt, yt, zt),

where

at(xt) =

∫ xt

0
pu(xt − yt−1)at−1(yt−1)dyt−1, (8)
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bt(xt, zt) =

∫ xt

0
pu(xt − yt−1)bt−1(yt−1, zt)dyt−1 + pu(xt + zt)ct−1(−zt)

+

∫ xt

0
pu(xt + zt − yt−1)dt−1(yt−1 − zt, yt−1)dyt−1

+

∫ 0

−zt

pu(xt − xt−1)et−1(xt−1, zt)dxt−1

+

∫ xt

0

∫ yt−1

yt−1−zt

pu(xt − xt−1)ft−1(xt−1, yt−1, zt)dxt−1dyt−1,

ct(xt) =

∫ −xt

0

∫ 0

−zt−1

pu(xt − xt−1)et−1(xt−1, zt−1)dxt−1dzt−1

+

∫ −xt

0
pu(xt + zt−1)ct−1(−zt−1)dzt−1,

dt(xt, yt) = pu(xt − yt)at−1(yt) + pu(xt − yt)

∫ yt−xt

0
bt−1(yt, zt−1)dzt−1

+

∫ yt−xt

0
pu(xt − yt + zt−1)dt−1(yt − zt−1, yt)dzt−1

+

∫ yt−xt

0

∫ yt

yt−zt−1

pu(xt − xt−1)ft−1(xt−1, yt, zt−1)dxt−1dzt−1,

et(xt, zt) = pu(xt + zt)ct−1(−zt)

+

∫ 0

−zt

pu(xt − xt−1)et−1(xt−1, zt)dxt−1,

ft(xt, yt, zt) = pu(xt − yt)bt−1(yt, zt)

+pu(xt − yt + zt)dt−1(yt − zt, yt)

+

∫ yt

yt−zt

pu(xt − xt−1)ft−1(xt−1, yt, zt)dxt−1.

The starting point is given from Eq. (7): a1(x1) = pu(x1), b1(x1, z1) = 0, c1(x1) = pu(x1),
d1(x1, y1) = 0, e1(x1, z1) = 0, and f1(x1, y1, z1) = 0. Once we obtain the joint density p(xt, yt, zt),
the marginal density of the maximum drawdown can be obtained in a straightforward way, as
follows:

p(zt) =

∫ ∞

0

∫ ∞

−∞
p(xt, yt, zt)dxtdyt. (9)

Applying this formula gives the following final probability density function of the maximum
drawdown:

p(zt) = δ(zt)

∫ ∞

0
at(xt)dxt +

∫ ∞

0
bt(xt, zt)dxt + ct(−zt) +

∫ ∞

0
dt(yt − zt, yt)dyt

+

∫ 0

−∞
et(xt, zt)dxt +

∫ ∞

0

∫ yt

yt−zt

ft(xt, yt, zt)dxtdyt.

(10)
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Figure 2. An example of the process that yields Term 1 (no drawdowns, always new highs, and yt = xt)

Figure 3. An example of the process that yields Term 2 (a new high, i.e. yt = xt, but some drawdowns)

Figure 4. An example of the process that yields Term 3 (a new MDD at time t, and zero yt, i.e. all process

values below starting point)
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Figure 5. An example of the process that yields Term 4 (a new MDD at time t, but a positive yt)

Figure 6. An example of the process that yields Term 5 (zero yt, but no new MDD at time t)

Figure 7. An example of the process that yields Term 6

(a general case, no new high and no new MDD at time t)

5 Implementation Examples

To illustrate the derived formulas we have considered a simple example of normal increments
(pu ≡ N(0, 1), T = 4). We used simple numerical integration to compute the recursive integrals
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in the formulas. Figure 8 shows the probability density function, as derived by the formulas,
versus a simulation computation. This confirms the accuracy of the derived formula.

Figure 8. MDD density for the case of normal increments for T=4

In the next set of experiments we explore the MDD density for some processes. First we
considered a normal process, with increment density N(0, 1), ran for 12 steps forward (T = 12,
akin to an investment horizon of 12 months). Figure 9 shows the evolution of the MDD density
every two time steps, until reaching the final time step of T = 12. As expected, the MDD
density spreads out with time, but this slows down as T increases. In another experiment we
considered a process with double exponential exponential increment density, given by:

pu(u) =
1

2b
e
−
[

|u−µ|
b

]
, (11)

where the parameters are selected as µ = 0 b = 1√
2
such that this double exponential process

has the same increment mean and standard deviation as the normal process implemented above.
Figure 10 shows the evolution of the MDD density every two time steps, until reaching the final
time step of T = 12. One can observe that the MDD density is very close to that of the normal
process. This suggests that it is the mean and standard deviation of the increments that play
the major role in determining the MDD density’s shape, rather than tail behavior.

Figure 9. The evolution of the MDD density for the case of normal increments for various values of T (T=2, 4,

6, 8, 10, 12). Note that there is a small delta function at z = 0, not shown in the figure, that progressively

becomes smaller an smaller as T increases.
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Figure 10. The evolution of the MDD density for the case of Double exponential increments for various values

of T (T=2, 4, 6, 8, 10, 12). Note that there is a small delta function at z = 0, not shown in the figure, that

progressively becomes smaller an smaller as T increases.

6 Conclusion

In this work we have derived recursion integral equations for the maximum drawdown density
problem for discrete processes. The advantage of the proposed work is that it deals with discrete
processes, a case rarely considered in the literature. In real financial markets time is discrete
in actuality. The other contribution is that it gives a complete characterization of the density,
rather than the moments as in most other works. The benefit of this study is that it could open
the door for further analysis and future studies for discrete processes. For example, one could
consider asymptotic T −→ ∞ behavior, or one could consider tail behavior of the MDD density
(one could consider the general behavior of these densities asymptotically and in the tail given
general properties of pu, such as bounded mean and variance).
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